This example shows how to train data for XOR function
Beispiel #1 xor.data file
4 2 1 -1 -1 -1 -1 1 1 1 -1 1 1 1 -1
Beispiel #2 Simple train
<?php
$num_input = 2;
$num_output = 1;
$num_layers = 3;
$num_neurons_hidden = 3;
$desired_error = 0.001;
$max_epochs = 500000;
$epochs_between_reports = 1000;
$ann = fann_create_standard($num_layers, $num_input, $num_neurons_hidden, $num_output);
if ($ann) {
fann_set_activation_function_hidden($ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output($ann, FANN_SIGMOID_SYMMETRIC);
$filename = dirname(__FILE__) . "/xor.data";
if (fann_train_on_file($ann, $filename, $max_epochs, $epochs_between_reports, $desired_error))
fann_save($ann, dirname(__FILE__) . "/xor_float.net");
fann_destroy($ann);
}
?>
This example shows how to read and run data for XOR function
Beispiel #3 Simple test
<?php
$train_file = (dirname(__FILE__) . "/xor_float.net");
if (!is_file($train_file))
die("The file xor_float.net has not been created! Please run simple_train.php to generate it");
$ann = fann_create_from_file($train_file);
if (!$ann)
die("ANN could not be created");
$input = array(-1, 1);
$calc_out = fann_run($ann, $input);
printf("xor test (%f,%f) -> %f\n", $input[0], $input[1], $calc_out[0]);
fann_destroy($ann);
?>